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1. Introduction

Recent studies of strongly coupled thermal gauge theories in the framework of the gauge-

gravity duality ([1 – 3], for a review see [4]) suggest that in all those theories in the regime

described by gravity duals the ratio of the shear viscosity to volume entropy density is

universal and equal to 1/4π [5 – 7]. As this result was obtained assuming zero densities of

conserved charges, a natural question to ask is what happens when the chemical potentials

conjugated to these charges are turned on.

The simplest ten-dimensional gravitational background corresponding to a non-zero

chemical potential in a dual four-dimensional finite-temperature field theory is the one

of spinning near-extremal three-branes [8 – 10]. The number of independent commuting

angular momenta that can be given to the three-branes is equal to the rank r = 3 of the

isometry group SO(6) of the space transverse to the branes. Upon dimensional reduction

on S5 one obtains the background corresponding to the five-dimensional asymptotically

AdS black hole of the Reissner-Nordström type with three U(1) charges proportional to

the angular momenta of the branes [10]. This background was found by Behrnd, Cvetič

and Sabra [11] as a particular solution to the equations of motion of the five-dimensional
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N = 2 gauged supergravity. The solution corresponding to the dimensional reduction of

the spinning three-brane metric has a translationally invariant horizon. (It can also be

regarded as a black hole with a spherical horizon in an infinite volume limit.)

In the AdS/CFT correspondence the isometry group of S5 is interpreted as the R-

symmetry group of the dual N = 4 supersymmetric Yang-Mills (SYM) theory. Three

independent chemical potentials µi can be introduced as the Lagrange multipliers to the

three U(1) charges in the Cartan subalgebra of SO(6)R. Thermodynamics of the R-charged

black holes in the context of the AdS/CFT correspondence was originally studied in [8, 12],

[9, 10]. One feature relevant for our discussion is the thermodynamic instability1 occurring

for black holes with excessively large charge (or equivalently for the three-branes rotating

too fast) [8, 12]. The instability may signal the onset of a phase transition. However, both

in gravity and in the dual strongly coupled field theory picture it is not clear what the new

phase might be.

In this paper we study the hydrodynamic regime of the four-dimensional N = 4 SU(Nc)

SYM theory with three non-zero chemical potentials in the limit of large Nc and large ’t

Hooft coupling g2
Y MNc. Using Kubo formula, we compute the shear viscosity as a function

of the three charges (or chemical potentials) and show that for any values of the charges

in the thermodynamic stability domain the ratio of the viscosity to entropy density is

equal to 1/4π. For a technically simpler case of a single charge black hole we explicitly

compute thermal correlation functions of the stress-energy tensors and R-currents in the

shear channel in the hydrodynamic approximation. The correlators exhibit a diffusion pole

with the dispersion relation that confirms the result for the shear viscosity found from the

Kubo formula. We also compute thermal conductivity. The ratio of thermal conductivity

and shear viscosity obeys a simple relation reminiscent of the Wiedemann-Franz law for

the ratio of the thermal conductivity to the electrical conductivity. Finally, we investigate

the behavior of the transport coefficients near the boundary of thermodynamic stability

and compute the corresponding critical exponent.

The paper is organized as follows. We review the STU-model solution of Behrnd,

Cvetič and Sabra in section 2. The shear viscosity for the three-charge black hole solu-

tions is computed in section 3. Starting from section 4, we specialize to the single-charge

background: in section 4 we compute the correlation functions of the shear mode com-

ponents of the stress-energy tensors and R-currents in the hydrodynamic approximation,

in section 5 we obtain the thermal conductivity, and in section 6 we discuss the critical

behavior of the transport coefficients. For convenience of the reader, in appendix A we

outline the rescaling procedure necessary to obtain an asymptotically AdS charged black

hole with a translationally invariant horizon from the black hole with a spherical horizon.

In appendix B we review relativistic hydrodynamics at finite chemical potential.

2. The R-charged black hole background

The STU-model solution to equations of motion of D = 5 N = 2 gauged supergravity was

found by Behrnd, Cvetič and Sabra [11]. The relevant part of the gauged supergravity

1The related instability of the gravitational background was studied in [13].
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effective Lagrangian is

L√−g
= R +

2

L2
V − 1

2
GijF

i
µνFµν j − Gij∂µXi∂µXj +

1

24
√−g

εµνρσλεijkF
i
µνF ρσjAk

λ , (2.1)

where F i
µν , i = 1, 2, 3 are the field-strength tensors of the three Abelian gauge fields, Xi

are three real scalar fields subject to the constraint X1X2X3 = 1. The metric on the scalar

manifold is given by

Gij =
1

2
diag

[

(X1)−2, (X1)−2, (X1)−2
]

.

The scalar potential is

V = 2
3

∑

i=1

1

Xi
.

The three-charge non-extremal STU solution is specified by the following background values

of the metric

ds2 = −H−2/3 fk dt2 + H1/3
(

f−1
k dr2 + r2dΩ2

3,k

)

, (2.2)

fk = k − mk

r2
+

r2

L2
H , Hi = 1 +

qi

r2
, H = H1H2H3 , (2.3)

as well as the scalar and the gauge fields

Xi =
H1/3

Hi
, Ai

t =

√

kqi + mk

qi

(

1 − H−1
i

)

. (2.4)

Here mk is the non-extremality parameter, and qi, i = 1, 2, 3 are related to physical charges

characterizing the background. The parameter k determines the spatial curvature of dΩ2
3,k:

k = 1 corresponds to the metric on the three-sphere of unit radius, k = 0 - to the metric on

R
3. It was shown in [10] that the k = 0 solution arises as the Kaluza-Klein reduction on S5

of the ten-dimensional metric describing spinning near-extremal three-branes. The three R-

charges qi are related to the three independent angular momenta in ten dimensions. Since,

strictly speaking, hydrodynamic regime is meaningful only in the case of a translationally-

invariant horizon, in this paper we set2 k = 0 and

dΩ2
3,0 → 1

L2

(

dx2 + dy2 + dz2
)

.

Introducing the new radial coordinate u = r2
+/r2, where r+ is the largest root of the

equation f(r) = 0, we write the background fields in the form

ds2
5 = −H−2/3 (πT0L)2

u
f dt2 + H1/3 (πT0L)2

u

(

dx2 + dy2 + dz2
)

+ H1/3 L2

4fu2
du2 , (2.5)

f(u) = H(u) − u2
3

∏

i=1

(1 + κi) , Hi = 1 + κiu , κi ≡
qi

r2
+

, T0 = r+/πL2 . (2.6)

2The background with a translationally-invariant horizon and related thermodynamics can also be ob-

tained by taking an infinite volume limit of the k = 1 solution (see Appendix A).

– 3 –



J
H
E
P
0
3
(
2
0
0
6
)
0
5
2

The scalar fields and the gauge fields are given by3

Xi =
H1/3

Hi(u)
, Ai

t =
κ̃i

√
2u

LHi(u)
, κ̃i =

√
qi

L

3
∏

i=1

(1 + κi)
1/2 . (2.7)

The Hawking temperature of the background (2.5) is given by

TH =
2 + κ1 + κ2 + κ3 − κ1κ2κ3

2
√

(1 + κ1)(1 + κ2)(1 + κ3)
T0 . (2.8)

The volume density of the Bekenstein-Hawking entropy is

s =
AH

4G5V3
=

π2N2T 3
0

2

3
∏

i=1

(1 + κi)
1/2 , (2.9)

where V3 is the spatial volume along the three infinite dimensions of the horizon, G5 =

πL3/2N2. The energy density and pressure are given by

ε =
3π2N2T 4

0

8

3
∏

i=1

(1 + κi) , (2.10)

P =
π2N2T 4

0

8

3
∏

i=1

(1 + κi) . (2.11)

The densities of physical charges are

ρi =
π

4G5

r2
+κ̃iL√
2V3

=
πN2T 3

0

8

√
2κi

3
∏

l=1

(1 + κl)
1/2 . (2.12)

The chemical potentials conjugated to ρi are defined as

µi = Ai
t(u)

∣

∣

∣

∣

∣

u=1

=
πT0

√
2κi

(1 + κi)

3
∏

l=1

(1 + κl)
1/2 . (2.13)

For the grand canonical ensemble, where the system in thermodynamic equilibrium is

characterized by the values of temperature and chemical potentials regulating its interaction

with the surrounding heat bath, the appropriate thermodynamic potential is the Gibbs

potential Ω,

Ω/V3 = −P = ε − THs −
3

∑

i=1

µiρi . (2.14)

The first law of thermodynamics reads

dP = sdTH +
3

∑

i=1

ρidµi . (2.15)

3We change the normalization of the gauge fields by a factor of
√

2/L. This normalization is used in the

rest of the paper.
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A stable thermodynamic equilibrium is determined by the conditions

(δΩ)T,µi fixed
= 0 ,

(

δ2Ω
)

T,µi fixed
> 0 . (2.16)

The stability condition (2.16) translates into the equation

det

(

∂2ε(s, ρi)

∂s∂ρi

)

> 0 . (2.17)

Since κi = 8π2ρ2
i /s

2 and

ε(s, ρi) =
3s4/3

2(2πN)2/3

3
∏

i=1

(

1 +
8π2ρ2

i

s2

)1/3

,

the condition of thermodynamic stability implies the following constraint on κi

2 − κ1 − κ2 − κ3 − κ1 κ2 κ3 > 0 . (2.18)

3. Shear viscosity

The simplest way to compute shear viscosity from the dual gravity background is to use

Kubo formula. Kubo formula relates the shear viscosity to the correlation function of the

stress-energy tensor at zero spatial momentum,

η = lim
ω→0

1

2ω

∫

dt dx eiωt 〈[Txy(x), Txy(0)]〉 = − lim
ω→0

ImGxyxy(ω, 0)

ω
, (3.1)

where the retarded Green’s function for the components of the stress-energy tensor is

defined as

Gµνλρ(ω,q) = −i

∫

d4x e−iq·x θ(t)〈[Tµν(x), Tλρ(0)]〉 . (3.2)

Thus finding the shear viscosity amounts to computing the zero-frequency limit of the

imaginary part of the retarded correlator Gxyxy(ω, q). To compute the correlator, we

follow the procedure outlined in [14] and used in [15] to determine the shear viscosity of

the strongly coupled N = 4 SYM at zero chemical potential. First, one has to determine

the equation obeyed by the component hxy(u, t, z) of the gravitational perturbation of the

background (2.5) - (2.7). By symmetry argument [15], [16] or by the direct analysis of

perturbations of the equations of motion following from the Lagrangian (2.1) one can show

that the Fourier component of the off-diagonal perturbation φ ≡ hx
y decouples from all

other perturbations and obeys the equation for a minimally coupled massless scalar in the

background (2.5)

φ′′
k +

uf ′ − f

uf
φ′

k +
H� 2 − f �2

uf2
φk = 0 , (3.3)

where
� =

ω

2πT0
, � =

ω

2πT0
. (3.4)
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The solution to eq. (3.3) in the hydrodynamic regime � ¿ 1, � ¿ 1 can be obtained along

the lines of ref. [15]. We find

φk = Ckf
−i� U

{

1 − iU

2

[

log
c3(u − 1)2

a(u − 1)2 + b(u − 1) + c

− b − 2c√
b2 − 4ac

log
(2a(u − 1) + b −

√
b2 − 4ac)(b +

√
b2 − 4ac)

(2a(u − 1) + b +
√

b2 − 4ac)(b −
√

b2 − 4ac)

]

+ · · ·
}

, (3.5)

where ellipses denote higher order terms in the hydrodynamic expansion,

a =

3
∏

i=1

κi , b = 2a − 1 −
3

∑

i=1

κi , c = b − a − 1 .

and

U(κ1, κ2, κ3) =

√

(1 + κ1)(1 + κ2)(1 + κ3)

2 + κ1 + κ2 + κ3 − κ1κ2κ2
.

In the limit κi → 0 the solution (3.5) reduces to the one found in [15].

Another essential ingredient in computing the correlator is the boundary action. The

total action is given by

S =
1

16πG5

∫

M5

d5x L +
1

8πG5

∫

∂M5

d4x
√
−hK +

1

8πG5

∫

∂M5

d4x
√
−hW , (3.6)

where the second term is the Gibbons-Hawking boundary term, and the third term is

required to make the action finite4 in the limit u → 0. The explicit form of W for the

background of interest was determined in [21]:

W = −H1/3

L

3
∑

i=1

H−1
i . (3.7)

Computing the action (3.6) on shell and expanding to quadratic order in hy
x we find the

following boundary action for φk

SB = −π2N2T 4
0

8

f(u)

u
φ′

k(u)φ−k(u)

∣

∣

∣

∣

∣

1

0

. (3.8)

Following the prescription of [14] the retarded correlator is then computed as

Gxyxy(ω, q) = −π2N2T 4
0

4
lim
ε→0

f(ε)φ′
k(ε)

ε φk(ε)
. (3.9)

(The solution φk(u) has been normalized to 1 at u = ε.) We find

Gxyxy(ω, q) =
iπN2T 3

0 ωc

8
U(κ1, κ2, κ3) . (3.10)

4For a discussion of relevant issues in the context of holographic renormalization, see e.g. [17 – 21].

– 6 –



J
H
E
P
0
3
(
2
0
0
6
)
0
5
2

The Kubo formula (3.1) gives the shear viscosity

η =
π

8
N2T 3

0

√

(1 + κ1)(1 + κ2)(1 + κ3) =

πN2T 3
H

3
∏

i=1
(1 + κi)

2

(2 + κ1 + κ2 + κ3 − κ1κ2κ3)3
. (3.11)

Comparing this result with the expression (2.9) for the entropy density we immediately

conclude that for any value of the chemical potential

η

s
=

1

4π
. (3.12)

For small κi we have

η =
πN2T 3

H

8

(

1 +
1

2

3
∑

i=1

κi + O(κ2
i )

)

. (3.13)

4. Shear viscosity from the diffusion pole

In this Section we explicitly compute the retarded correlation functions of the stress-energy

tensor and the R-currents and show that they exhibit a diffusion pole predicted by hydro-

dynamics. The value of the shear viscosity extracted from the pole is in agreement with

eq. (3.11). For simplicity, in the rest of the paper we restrict ourselves to the case of a single

charge black hole. We set q1 6= 0, q2 = q3 = 0 and omit the index “1” in all subsequent

expressions.

4.1 The single charge black hole background

For a single charge black hole the effective Lagrangian (2.1) can be written as

L√−g
= R +

2

L2
V − L2

8
H4/3F 2 − 1

3
H−2gµν∂µH ∂νH , (4.1)

where Fµν is the field-strength tensor of a U(1) gauge field, and V is the potential for the

scalar field H,

V = 2H2/3 + 4H−1/3 . (4.2)

The system of the gauged supergravity equations of motion for the fields gµν , Aµ, H reads

H = H−1gµν∂µH ∂νH +
L2

4
H7/3F 2 − 3

L2
H2 ∂V

∂H
,

∂µ

(√−gH4/3Fµν
)

= 0 ,

Rµν =
L2

4
H4/3FµγFν

γ + 1
3H−2∂µH∂νH − gµν

[

2

3L2
V +

L2

24
H4/3F 2

]

.

(4.3)

Consider small perturbations of the single charge background

gµν = g0
µν + hµν(u, t, z) , (4.4)

Aµ = A0
µ + Aµ(u, t, z) , (4.5)

– 7 –
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where g0
µν , A0

µ are given by eqs. (2.5), (2.7) with κ1 ≡ κ, κ2 = κ3 = 0. We assume that the

perturbations depend on time, radial coordinate, and only one of the spatial world-volume

coordinates, z. We are interested in gravitational fluctuations of the shear type, where the

only nonzero components of hµν are hta, hza, a = x, y. One can show that fluctuations of

all other fields except Aa(r, t, z), a = x, y, can be consistently set to zero. Introducing the

new variables

T ≡ Hta = gxxhta , Z ≡ Hza = gxxhza , A =
2Aa

µ
(4.6)

the system of linearized equations derived from eqs. (4.3) can be written as

T ′ +
� f
� H

Z ′ +
κu

2H
A = 0 , (4.7a)

T ′′ +
uH ′ − H

uH
T ′ −

� �
fu

Z − �2

fu
T +

κu

2H
A′ = 0 , (4.7b)

Z ′′ +
uf ′ − f

uf
Z ′ +

�2 H

f2u
Z +

� � H

f2u
T = 0 , (4.7c)

(

HfA′ + 2(1 + κ)T
)′ − �2H

u
A +

�2H2

fu
A = 0 . (4.7d)

These equations are not independent: combining eq. (4.7a) with eq. (4.7b), one obtains

eq. (4.7c). Thus it is sufficient to consider eqs. (4.7a), (4.7b), (4.7d). Expressing Z(u)

from eq. (4.7b), we differentiate it with respect to the radial coordinate u and substitute

the resulting expression for Z ′(u) into eq. (4.7a). Thus we obtain a system of two coupled

differential equations for G(u) ≡ T ′(u) and A(u)

G′′ +

(

H ′

H
+

f ′

f

)

G′ +

(

H ′

uH2
− f ′

ufH
+

�2H

uf2
− �2

uf

)

G

+
κu

2H
A′′ +

κuHf ′ + κf(2H − uH ′)

2fH2
A′ +

κ�2

2f2
A = 0 , (4.8)

A′′ +

(

f ′

f
+

H ′

H

)

A′ +
�2H − �2f

uf2
A +

2(1 + κ)

fH
G = 0 . (4.9)

(For κ = 0 eqs. (4.8), (4.9) decouple5 and reduce respectively to eqs. (6.15) and (5.5d)

of ref. [15].) For the system (4.8), (4.9), the exponents at the singular point u = 1 corre-

sponding to the horizon are

α = { 0 , 0 , i�U(κ) , −i�U(κ) } , (4.10)

where U(κ) ≡ U(κ, 0, 0). Choosing the exponent −i�U(κ) corresponding to the incoming

wave boundary condition at u = 1, we look for the solutions to eqs. (4.8), (4.9) in the

hydrodynamic approximation in the form

G(u) = −u(2 + κu)

2H(u)2
f−i�U(κ)

(

G0(u) + �G1(u) + �2G2(u) + · · ·
)

, (4.11)

A(u) =
1

κH(u)
f−i�U(κ)

(

A0(u) + �A1(u) + �2A2(u) + · · ·
)

, (4.12)

5One should recall the rescaling (4.6).
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where functions Gi, Ai are regular at u = 1. We obtain

G0(u) = C1 −
C2

κ
, (4.13)

A0(u) = C1 + uC2 , (4.14)

where C1, C2 are the integration constants. Next,

G1 =
i

κ
√

κ + 1 (κ + 2)u (2 + κu)

{

(u − 1)

(

C2(κ + 2) (2 + κu)

− C1 κ (2 + κ + κu + κ2u)

)

+ 2 (κ + 1) (C2 + uC1)u (2 + κu) log
κ + 2

u + H(u)

}

, (4.15)

A1 = − i√
κ + 1 (κ + 2)

[

(u − 1)

(

C1 κ − C2 (κ + 2)

)

+ 2 (κ + 1) (C1 + C2u) log
κ + 2

u + H(u)

]

. (4.16)

Functions G2(u), A2(u) are given by rather cumbersome expressions involving polyloga-

rithms. We do not write them explicitly here.

The integration constants C1, C2 can be expressed in terms of the boundary values of

the fields T (0), Z(0), A(0) by solving the equations

lim
u→0

A(u) = A(0) , (4.17)

lim
u→0

uf(u)

(

G′ − 1

uH
G +

κu

2H(u)
A′

)

= �� Z(0) + �2 T (0) , (4.18)

where eq. (4.18) comes from eq. (4.7b). We find

C1 = κA(0) , (4.19)

C2 = − 2κ (1 + κ) �2

�2 − i 2
√

1 + κ� T (0) +
κ2 (�2 − i

√
1 + κ �)

�2 − i 2
√

1 + κ� A(0) . (4.20)

One can observe the appearance of the hydrodynamic pole in eq. (4.20).

4.2 The correlators

We are interested in two-point retarded correlation functions of stress-energy tensors and

R-currents defined by

Gµνλρ(ω,q) = −i

∫

d4x e−iq·x θ(t)〈[Tµν(x), Tλρ(0)]〉 . (4.21)

Gµνλ(ω,q) = −i

∫

d4x e−iq·x θ(t)〈[Tµν(x), Jλ(0)]〉 . (4.22)

Gµν(ω,q) = −i

∫

d4x e−iq·x θ(t)〈[Jµ(x), Jν(0)]〉 . (4.23)

– 9 –
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To compute the correlators we need to consider the boundary action. On shell, the action

reduces to the surface terms, S = Shorizon + Sε, where

Sε = lim
u→0

π2N2T 4
0

8

∫

d4x

[

−(1 + κ) − H

u
H ′

taHta +
f

u
H ′

zaHza +
fH

2π2T 2
0

A′
aAa

− 3

2
(1 + κ)H2

ta −
1

2
(1 + κ)H2

za +

√

2κ(1 + κ)

2πT0
HtaAa

]

. (4.24)

The first term in eq. (4.24), −π2N2T 4
0 (1 + κ)V4/8, is the density of the Gibbs potential

Ω (i.e. the pressure with a minus sign), times the four-volume. The retarded two-point

functions are obtained from Sε following the recipe formulated in [14]. After substituting

the solution (4.12) into eq. (4.24), the part of the boundary action quadratic in fluctuations

assumes the form

S(2)
ε =

∫

dωdq

(2π)2
φ

(0)
i (ω, q)Fik(ω, q)φ

(0)
k (−ω,−q) , (4.25)

where φ
(0)
i denote the boundary values of the fields T (0), Z(0), A

(0)
a . Then the retarded

correlators are given by6

GR =







−2Fik(ω, q) , i = k,

−Fik(ω, q) , i 6= k.
(4.26)

Computing the correlators, to leading order in the hydrodynamic approximation we obtain7

Gtata(ω, q) =

√
1 + κN2πT 3

0 q2

8(iω −Dq2)
, (4.27)

Gtaza(ω, q) = −
√

1 + κN2πT 3
0 ωq

8(iω −Dq2)
, (4.28)

Gzaza(ω, q) =

√
1 + κN2πT 3

0 ω2

8(iω −Dq2)
, (4.29)

where the diffusion constant is given by

D =
1

4πT0

√
1 + κ

=
1

4πTH

1 + κ/2

1 + κ
. (4.30)

In the limit κ → the results (4.27) - (4.30) reduce to those obtained in [15] for the case of

a zero chemical potential. For the correlators of the components of a stress-energy tensor

and an R-current we have

Gtaa(ω, q) =
i
√

2κ(1 + κ)N2πT 3
0 ω

8(iω −Dq2)
. (4.31)

Gzaa(ω, q) = −
√

2κ N2T 2
0 ωq

32(iω −Dq2)
. (4.32)

6Note that we obtain the correlators with upper indices. Indices of the boundary theory correlators are

raised or lowered with the flat Minkowski metric, so that e.g. Gtaza = −Gtaza.
7Contact terms are ignored.
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These correlators vanish in the limit κ → 0, in agreement with [15]. Finally, the retarded

correlator of the x (or y) component of the R-currents is given by

Gxx(ω, q) = Gyy(ω, q) = Gaa(ω, q) =
iκN2T 2

0 ω

16(iω −Dq2)
+ O(ω, q2) . (4.33)

In the limit κ → 0 the leading contribution in eq. (4.33) vanishes. The subleading term

gives Gaa = −iN2T0ω/16π which coincides with the result obtained in [15].

In the limit of vanishing spatial momentum the nontrivial contribution to Gaa(ω, q)

again comes from the subleading term in eq. (4.33). It is given by

Gaa(ω, 0) = − i(κ + 2)2N2T0ω

64π
√

κ + 1
. (4.34)

We also find that in the limit q → 0 the correlators Gtaa and Gtata vanish (modulo contact

terms).

4.3 The diffusion pole

All the retarded correlators in the shear channel exhibit a diffusion pole with the dispersion

relation

ω = −iD q2 , (4.35)

where the diffusion constant D is given by eq. (4.30). To find viscosity, recall that in

hydrodynamics

D =
η

ε + P
.

From thermodynamics it follows that

ε + P = THs + µρ =
2(1 + κ)

2 + κ
THs .

Thus for the ratio of shear viscosity to entropy density we find η/s = 1/4π which coincides

with the result (3.12) obtained from the Kubo formula.

5. Thermal conductivity

Thermal conductivity κT can be computed using the appropriate Kubo formula (see Ap-

pendix B)

κT = −(ε + P )2

ρ2T
lim
ω→0

1

ω
ImG(ω,0) . (5.1)

Here G is the retarded Green’s function of the R-current components Jx given by eq. (4.34).

Thus we find

κT =
N2(κ + 2)

32π

(ε + P )2

ρ2
= πN2T 2

H

(1 + κ)2

κ(κ + 2)
. (5.2)

In terms of the chemical potential � the thermal conductivity can be written as

κT = πN2T 2
H

1 +
√

1 − 4� 2 − �2(
√

1 − 4�2 − 5)

8�2 . (5.3)
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Comparing this result to the one for the shear viscosity (3.11), we observe that for a single-

charge black hole, the shear viscosity and thermal conductivity can be expressed in terms

of the chemical potential µ1 ≡ µ as

η =
πN2T 3

H

8
Fη(µ, TH) , κT =

πN2T 2
H

8
Fκ(µ, TH) , (5.4)

where the functions Fη, Fκ depend only on the ratio � = µ/2πTH ,

Fη(µ, TH) =
8�2

(

1 −
√

1 − 4�2 − �2
)2

(

1 −
√

1 − 4�2
)3 , Fκ(µ, TH) =

2

�2 Fη(µ, TH) . (5.5)

Thus for all values of TH and µ one finds an analogue of the Wiedemann-Franz law [24]

κT µ2

ηTH
= 8π2 . (5.6)

For small � we get

Fη = 1 + �2 − �6 + O(�8) .

The function Fη(�) is shown in Fig. 1.

6. Critical behavior of transport coefficients

The boundary of thermodynamic stability is � c = 1/2 or µc = πT . Expanding the shear

viscosity and the thermal conductivity near � = �c we obtain

η = η∗

[

1 +
2

3

√

� c − � − 20

9
(� c − �) + O

(

(� c − �)3/2
)

]

, (6.1)

κT = κT∗

[

1 +
2

3

√

� c − � +
16

9
(� c − �) + O

(

(� c − �)3/2
)

]

, (6.2)

where

η∗ =
9πN2T 3

H

64
, κT∗ =

9πN2T 2
H

8
.

Both the viscosity and the thermal conductivity are finite8 at the critical point. Their

derivatives diverge with the critical index equal to 1/2.

7. Conclusion

We have considered the hydrodynamic regime of the N = 4 supersymmetric theory at finite

temperature and finite chemical potential. We have computed the shear viscosity and the

thermal conductivity. The shear viscosity is computed using two different methods which

give the same answer. We find that the ratio of shear viscosity and the entropy density

8Curiously, the shear viscosity of He 4 near the λ-point is also finite and its first derivative is divergent,

as first shown theoretically by A. M. Polyakov [25] and later confirmed experimentally [26].
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1
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1.1

1.15

1.2

1.25

�

Fη

Figure 1: Normalized shear viscosity Fη as a function of the chemical potential � = µ/2πTH .

There is a cusp singularity at µc = πTH . The part of the curve to the right of the singularity

(shown in dashed line) is unphysical.

is always equal to 1/4π, which is the same value found so far in all theories with gravity

duals. Our result demonstrates that the universality of this ratio extends to theories with

gravity duals at finite chemical potentials. We found a curious relationship between the

shear viscosity and the thermal conductivity similar to the Wiedemann-Franz law, and we

have also determined the critical behavior of the kinetic coefficients near the boundary of

thermodynamic stability.

One possible extension of this work is to compute the thermal conductivity and dif-

fusion coefficients in the case when all three conserved charges are nonzero. This would

complete our knowledge of the kinetic coefficents of N = 4 super-Yang-Mills theory in the

whole phase diagram, as the conformal invariance of the theory guarantees that the speed

of sound is equal to 1/
√

3 and the bulk viscosity is zero for any temperature and chemical

potential.

Note added: while this paper was being completed, we became aware of the work on

the same subject by J. Mas [27] whose results are in agreement with our analysis. Another

recent paper on the subject is by K. Maeda, M. Natsuume, and T. Okamura [28]. A closely

related work on the hydrodynamics of M2-branes by O. Saremi appeared in [29].
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A. Rescaling the black hole solution

The metric (2.5) of the gravity background dual to N = 4 SYM with nonzero chemical

potentials in Minkowski space can be obtained by rescaling and taking an infinite volume

limit of the black hole solution with a spherical horizon. (At zero chemical potential,

this procedure leads from the metric corresponding to an AdS-Schwarzschild black hole

to the metric describing the near-horizon region of non-extremal three-branes.) Following

refs. [22, 9], here we explain how the rescaling works for the solution itself as well as for

various thermodynamic quantities associated with it.

Focusing for simplicity on a single charge black hole, the metric (2.2) with k = 1 reads

ds2
5 = −H−2/3f1dt2 + H1/3

(

f−1
1 dr2 + r2 dΩ2

3

)

, (A.1)

where

f1 = 1 − m1

r2
+

r2

L2
H , H = 1 +

q

r2
.

Rescaling

r → λ1/4 r , t → λ−1/4 t , m1 → λm1 , q → λ1/2 q , (A.2)

and taking λ → ∞ while simultaneously blowing up the sphere

L2 dΩ2
3 → λ−1/2

(

dx2 + dy2 + dz2
)

(A.3)

in the limit we obtain the metric with a translationally invariant horizon

ds2
5 = −H−2/3 r2

L2
fdt2 + H1/3 L2

r2f
dr2 + H1/3 r2

L2

(

dx2 + dy2 + dz2
)

, (A.4)

where f = 1 + q/r2 − r4
0/r

4, with r4
0 ≡ m1L

2.

Similar reasoning applies to thermodynamic quantities and their densities. Tempera-

ture, entropy, energy and the Gibbs potential scale as

TH → λ1/4 TH , S → S , E → λ1/4 E , Ω → λ1/4 Ω . (A.5)

For the background (A.1), the inverse Hawking temperature, entropy, energy, and the

thermodynamic potential Ω are given correspondingly by (see e.g. [21])

β = 2π L2 (r2
+ + q)1/2

1 + q + 2r2
+

, SBH =
π2

2G5
r2
+

(

r2
+ + q

)1/2
,

E =
π

G5

(

3r4
0

8L2
+

q

4
+

3L2

32

)

, Ω =
π

G5

(

− r4
0

8L2
+

r2
+

4
+

3L2

32

)

.

In the limit λ → ∞ for the rescaled quantities we find

β = 2π L2 (r2
+ + q)1/2

q + 2r2
+

, SBH = λ3/4 π2

2G5
r2
+

(

r2
+ + q

)1/2
,

E = λ3/4 π

G5

3r4
0

8L2
, Ω = −λ3/4 π

G5

r4
0

8L2
. (A.6)
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From (A.3) one can see that 2π2L3 → λ−3/4V3 and thus the pressure and the densities of

entropy and energy are finite in the λ → ∞ limit and are given by

s = SBH/V3 =
r2
+(r2

+ + q)1/2

4G5L3
, (A.7)

ε = E/V3 =
3r4

0

16πG5L5
, (A.8)

P = −Ω/V3 =
r4
0

16πG5L5
. (A.9)

With identifications9 (2.6) and G5 = πL3/2N2 from eqs. (A.7)–(A.9) we obtain the ex-

pressions (2.9)–(2.11) used in the main text.

B. Relativistic hydrodynamics at finite chemical potential

For completeness here we review the hydrodynamics of a relativistic fluid with one con-

served charge. The hydrodynamic equations include the continuity equations

∂µT µν = 0, ∂µJµ = 0 (B.1)

and the constitutive equations, which formally have the form

T µν = (ε + P )uµuν + Pgµν + τµν , Jµ = ρuµ + νµ (B.2)

Here ε and P are the local energy density and pressure, uµ is the local velocity, uµuµ =

−1. The parts τµν and νµ are the dissipative parts of the stress-energy tensor and the

current. To complete the system of equations we need expressions relating τµν and νµ with

derivatives of uµ and of the thermodynamic potentials.

Following Landau and Lifshitz [23], we can choose uµ and ρ so that τµν and νµ are

orthogonal to uµ

uµτµν = uµνµ = 0 . (B.3)

The most general form of the constitutive equation follows from the second law of thermo-

dynamics. First we notice that

uν∂µT µν = −(ε + P )∂µuµ − uµ∂µε + uν∂µτµν = 0 (B.4)

Using the thermodynamic relations

ε + P = Ts + µρ, dε = Tds + µdρ, (B.5)

current conservation, and eq. (B.3), eq. (B.4) can be transformed into

∂µ(suµ) =
µ

T
∂µνµ − τµν

T
∂µuν (B.6)

9Note that r4
0 = r2

+(r2
+ + q), where r+ is the largest root of the equation f(r) = 0.
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or

∂µ

(

suµ − µ

T
νµ

)

= −νµ∂µ
µ

T
− τµν

T
∂µνµ . (B.7)

We now interpret the left hand side as the divergence of the entropy current. The right

hand side thus must be positive. This implies

νµ = −κ

(

∂µ µ

T
+ uµuλ∂λ

µ

T

)

, (B.8)

τµν = −η(∂µuν + ∂νuµ + uµuλ∂λuν + uνuλ∂λuµ) −
(

ζ − 2

3
η

)

(gµν + uµuν)∂λuλ . (B.9)

Here η and ζ are the shear and bulk viscosities, respectively. To have an interpretation

of κ as the coefficient of thermal conductivity, let us consider the case when there is no

charge transport, J i = 0, but there is an energy flow, T ti 6= 0, which is the heat flow. The

local velocity ui is necessarily small and is equal to

ui =
κ

ρ
∂i µ

T
. (B.10)

Therefore

T ti = (ε + P )ui =
κ

ρ
∂i µ

T
(ε + P ) . (B.11)

Using dP = sdT + ρdµ one can write this equation as

T ti = −κ

(

ε + P

ρT

)2 (

∂iT − T

ε + P
∂iP

)

. (B.12)

In the nonrelativistic theory the heat flow is proportional to the gradient of temperature; in

the relativistic limit there is an extra contribution proportional to the gradient of pressure.

The proportionality coefficient is the thermal conductivity,

κT =

(

ε + P

ρT

)2

κ . (B.13)

The Kubo’s formula for κT can be written down as follows. Suppose one puts the

thermal system in a slowly-varying external background gauge field Aµ coupled to the

conserved charge. This field will induce a current, proportional to the electric field Ei =

∂tAi−∂iAt. But since At plays the same role as the chemical potential, by comparing with

eq. (B.8) we can write

J i =
κ

T
(∂tAi − ∂iAt) (B.14)

In the case when the external fields are homogeneous in space, this relation becomes very

simple,

J i = i
κ

T
ωAi . (B.15)

We can compare this relation with the one that follows from the linear response theory,

J i = −GR(ω,0)Ai. Thus we obtain

GR(ω,0) = −iω
κ

T
. (B.16)

From eq. (B.13) we find the Kubo formula (5.1).
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